South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 1 (A) (2020), pp. 163-176

> ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

ω-TOPOLOGY AND α-TOPOLOGY

V. Ananthi and K. Bhuvaneswari

Department of Mathematics, Mother Teresa Women's University, Kodaikanal - 624101, Tamil Nadu, INDIA

E-mail: Ananthiramesh06@gmail.com, drkbmaths@gmail.com

(Received: Mar. 11, 2020 Accepted: April. 27, 2020 Published: Apr. 30, 2020)

Abstract: The aim of this paper is to introduce and investigate the new notions called b- ω_{α} -open sets, α - ω_{α} -open sets and pre- ω_{α} -open sets which are weaker than ω -open sets. Moreover decompositions of continuity are obtained by using these new notions.

Keywords and Phrases: α - ω_{α} -open set, ω -closed set, semi-open set, ω -open set.

2010 Mathematics Subject Classification: 26D05, 26D07.

1. Introduction

By a space (X, τ) , it means a topological space (X, τ) with no separation properties assumed. If $H \subset X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X, τ) .

Definition 1.1. [11] A subset H of a space (X, τ) is called

1. α -closed if $cl(int(cl(H))) \subset H$,

2. α -open if $X \setminus H$ is α -closed, or equivalently, if $H \subset int(cl(int(H)))$.

For a subset H of (X, τ) , the intersection of all α -closed subsets of X containing H is called the α -closure of H and is denoted by $cl_{\alpha}(H)$. It is known that $cl_{\alpha}(H) = H \cup cl(int(cl(H)))$ and $cl_{\alpha}(H) \subset cl(H)$. The union of all α -open subsets of X contained in H is called the α -interior of H and is denoted by $int_{\alpha}(H)$

In 1982, the notions of ω -closed sets and ω -open sets were introduced and studied by Hdeib [6]. In 2009, Noiri et al [12] introduced some generalizations of